SCIENCE

Advanced Targeting.
Designed to Combine.

Precigen advances the promise of precision immunology through novel gene and cell therapies designed to work in combination to achieve efficacy and safety.

Immuno-oncology
Autoimmune Disorders
Infectious Diseases

Construct

Powerful gene programs to drive efficacy

UltraVector®

UltraVector® platform incorporates advanced DNA construction technologies and computational models to design and assemble genetic components into complex gene expression programs. UltraVector-enabled matrices facilitate rapid identification of components that yield desired gene expression. Our library of characterized genetic components and associated functional characterization data enable construction of gene programs for optimized expression of multiple effector genes.

mbIL15

Membrane-bound interleukin-15, or mbIL15, is our proprietary chimeric cytokine that is engineered to be tethered to the cell surface to avoid systemic circulation. Expression of mbIL15 gene is shown to improve functional characteristics of certain immune cells, including T cells, by enhancing their potential for expansion and persistence resulting in longer lasting anti-tumor response.

Deliver

Gene programs via viral, non-viral, and microbe-based approaches to drive lower costs

Sleeping Beauty system

Sleeping Beauty is the leading non-viral transposon/transposase system to stably reprogram immune cells by inserting specific DNA sequences into the genome. Sleeping Beauty system brings the advantages of non-viral vectors that include the ease and relatively low cost of manufacturing, stability for longer-term storage, and lack of immunogenicity once inside host cells. Precigen has made significant improvements to the Sleeping Beauty system by optimizing gene elements, genetic payload capacity, and efficiency of delivery into the cells. These advancements have allowed us to develop a new class of autologous CAR-T therapy, UltraCAR-T, with expression of multiple effector genes simultaneously without the use of viral vectors.

AttSite™ recombinases

AttSite recombinases enable targeted non-viral based gene delivery for various cell therapies. AttSite recombinases allow for stable integration of therapeutic genes in a unidirectional, irreversible fashion into the host cell genome. We are optimizing AttSite recombinase technology for the next generation of cutting-edge cell therapeutic applications.

AdenoVerse®

AdenoVerse technology platform is composed of a library of highly potent, proprietary adenoviral vectors for efficient delivery of vaccine antigens and therapeutic genes and is built on a scalable manufacturing platform. AdenoVerse library includes our gorilla adenovectors, which provide a potential competitive advantage in their large payload capacity, ability for repeat administrations and generation of robust antigen-specific immune responses.

UltraPorator®

UltraPorator® is a high-throughput, semi-closed electroporation system exclusive to Precigen. The UltraPorator system includes proprietary hardware and software solutions and potentially represents major advancements over current electroporation devices by significantly reducing the processing time and contamination risk. UltraPorator is intended to be a viable scale-up and commercialization solution for decentralized UltraCAR-T manufacturing and is designed to enable rapid manufacturing for a range of gene and cell therapies beyond UltraCAR-T.

Control

Gene expression and regulation to drive safety

Kill switches  

Our suite of proprietary kill switches allow selective elimination of cell therapies in vivo via administration of a kill switch activator to improve the safety profile.

Tissue-specific promoters

Our library of tissue-specific promoters restrict gene expression to the cells or tissues of therapeutic interest and has potential to improve safety profile of gene therapies.

The tumor microenvironment state associates with response to HPV therapeutic vaccination in patients with respiratory papillomatosis. Norberg, SM, et al. Science Translational Medicine. 2023. https://www.science.org/doi/full/10.1126/scitranslmed.adj0740

Initial safety results and immune responses induced by a novel human papillomavirus (HPV)-specific gorilla adenovirus immunotherapy vaccine, PRGN-2009, in patients with advanced HPV-associated cancers. Floudas C, et al. Journal for ImmunoTherapy of Cancer. 2021. http://dx.doi.org/10.1136/jitc-2021-SITC2021.483.

Preclinical study of a novel therapeutic vaccine for recurrent respiratory papillomatosis (PRGN-2012). Lee, M.Y., Metenou, S., Brough, D.E. et al. npj Vaccines. 2021. https://doi.org/10.1038/s41541-021-00348-x.

Characterization of a recombinant gorilla-adenovirus HPV therapeutic vaccine (PRGN-2009). Pellom, Samuel T. et al. JCI Insight. 2021. https://doi.org/10.1172/jci.insight.141912.

A gorilla adenovirus-based vaccine against Zika virus induces durable immunity and confers protection in pregnancy. Hassan, et al. (2019) Cell Reports. 28:2634-2646.

Genetic vaccine for respiratory syncytial virus provides protection without disease potentiation. Johnson, et al. (2014) Mol Ther. 22:196-205.

Adenoviruses isolated from wild gorillas are closely related to human species C viruses. McVey, et al. (2013) Virology. 444:119-123.

Utilization of site-specific recombination for generating therapeutic protein producing cell lines. Campbell, et al. (2010) Molecular Biotechnology. 45:199-202. PMID: 20300883.

Phage Bxb1 integrase mediates highly efficient site-specific recombination in mammalian cells. Russell, et al. (2006) Biotechniques. 40:460, 462, 464. PMID: 16629393.

UltraCAR-T

Phase 1/1b study of PRGN-3005 autologous UltraCAR-T cells manufactured overnight for infusion next day to advanced stage platinum resistant ovarian cancer patients. Liao, J.B., et al. (2023) American Society of Clinical Oncology (ASCO) Annual Meeting. Abstract 5590.

Next generation UltraCAR-T® cells with intrinsic chgeckpoint inhibition and overnight manufacturing overcome suppressive tumor microenvironment leading to sustained antitumor activity. Zenere, G., et al. (2023) American Association for Cancer Research (AACR) Annual Meeting. Abstract 1791.

Phase 1/1b Safety Study of PRGN-3006 UltraCAR-T in Patients with Relapsed or Refractory CD33-Positive Acute Myeloid Leukemia and Higher Risk Myelodysplastic Syndromes. Sallman, D., et al. (2022) 64th Annual Meeting and Exposition of the American Society of Hematology (ASH). Abstract 4633.

A Phase1/1b Dose Escalation/Dose Expansion Study of PRGN-3007 UltraCAR-T Cells in Patients with Advanced Hematologic and Solid Tumor Malignancies. Ibarz, J., et al. (2022) 64th Annual Meeting and Exposition of the American Society of Hematology (ASH). Abstract 3334.

Incorporation of intrinsic checkpoint blockade enhances functionality of multigenic autologous UltraCAR-T cells manufactured using non-viral gene delivery and rapid manufacturing process. Chan, T., et al. (2022) American Association for Cancer Research (AACR) Annual Meeting. Abstract 2821.

Phase 1/1b Safety Study of PRGN-3006 UltraCAR-T in Patients with Relapsed or Refractory CD33-Positive Acute Myeloid Leukemia and Higher Risk Myelodysplastic Syndromes. Sallman, D., et al. (2021) 63rd Annual Meeting and Exposition of the American Society of Hematology (ASH). Abstract 825.

Preclinical Evaluation of PRGN-3007, a Non-Viral, Multigenic, Autologous ROR1 UltraCAR-T Therapy with Novel Mechanism of Intrinsic PD-1 Blockade for Treatment of Hematological and Solid Cancers. Chan, T., et al. (2021) 63rd Annual Meeting and Exposition of the American Society of Hematology (ASH). Abstract 1694.

A Phase 1/1b Safety Study of PRGN-3006 UltraCAR-T in Patients with Relapsed or Refractory CD33-Positive Acute Myeloid Leukemia and Higher Risk Myelodysplastic Syndrome. Sallman, D. et al. Blood (2020) 136 (Supplement 1): 17. 62nd Annual Meeting and Exposition of the American Society of Hematology. Abstract 2864.

PRGN-3005 UltraCAR-T: Multigenic CAR-T cells generated using non-viral gene delivery and rapid manufacturing process for the treatment of ovarian cancer. Chan, T., et al. (2020) American Association for Cancer Research (AACR) Virtual Annual Meeting II. Abstract 6593.

Preclinical characterization of PRGN-3006 UltraCAR-T for the Treatment of AML and MDS: non-viral, multigenic autologous CAR-T cells administered one day after gene transfer. Chan, T., et al. (2019) Blood. 134:2660.

Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells. Hurton, et al. (2016) Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):E7788-E7797. Epub 2016 Nov 14. PMID: 27849617.

Sleeping Beauty System

Evaluating risks of insertional mutagenesis by DNA transposons in gene therapy. Hackett, et al. (2013) Translational Research. 161:265-83. PMID: 23313630.

Genome-wide Profiling Reveals Remarkable Parallels Between Insertion Site Selection Properties of the MLV Retrovirus and the piggyBac Transposon in Primary Human CD4(+) T Cells. Gogol-Döring, et al. (2016) Mol Ther. 2016 Mar;24(3):592-606. doi: 10.1038/mt.2016.11. Epub 2016 Jan 12. PMID: 26755332.

Comparison of lentiviral and sleeping beauty mediated αβ T cell receptor gene transfer. Field, et al. (2013) PLoS One. 2013 Jun 28;8(6):e68201. doi: 10.1371/journal.pone.0068201. Print 2013. PMID: 23840834.

Gene transfer efficiency and genome-wide integration profiling of Sleeping Beauty, Tol2, and piggyBac transposons in human primary T cells. Huang, et. al (2010) Mol Ther. 2010 Oct;18(10):1803-13. doi: 10.1038/mt.2010.141. Epub 2010 Jul 6. PMID: 20606646.